Online Handwriting Recognition with Direction-Based Character Signatures
Kyle Murray
7.26.06

Abstract

Current online character recognition accuracy is not perfect, and there have been many
attempts to perfect the technique over the years to ensure that Tablet PCs, PDAs, and other
devices that utilize text recognition are usable and ideally transparent to the user. Many
systems rely on context-based recognition, as letter identification without context clues has not
been proven to be as accurate. A system was devised using direction-based stroke analysis to
attempt to improve letter recognition rates. This system was able to correctly recognize the
input character for 62.12% of the samples without the use of context clues. The success rate
indicates that the system is not yet accurate enough to stand alone, though it could potentially
be improved upon and implemented alongside context-based methods.

Introduction

Digitized pen input can be used to control computer interfaces. There are many ways in
which a pen can interact with a computer its user interface (IBM, 2001. Van West, 2003). The
pen can be used to control applications, make gestures that perform specific functions (Van
West, 2003), or write text to be recognized by the computer and turned into electronic text
input. (Chee, 2004. Downton and Impedovo, 1997. IBM, 2003. Liu et al, 2003. Heaton, 2005.
Van West, 2003) Handwriting recognition is especially useful for computer-based input of non-
Latin characters. The amount of characters in some languages is so great that traditional input
methods such as keyboards are unable to fully represent all of the characters in an accessible
manner, so interfacing with the computer is difficult. (Downton and Impedovo, 1997. Liu et al,
2003. Van West, 2003) PDAs have used this technology to assist with character input for years.

(Chee, 2004. Heaton, 2005)

The widespread use and general knowledge of written languages on normal media such

as paper by ordinary citizens generated the need for handwriting recognition with computers.

Kyle Murray

(Downton and Impedovo, 1997. Heaton, 2005. Liu et al, 2003) One of the primary original uses
of handwriting recognition was to recognize the text and addresses written on letters that were
going through the United States Postal System. The zip codes were read through early
recognition systems inside of the letter sorters which would then transport the letters to the
desired location. This system used an optical sensor to differentiate between white blank space

and dark or black written text. (Downton and Impedovo, 2003. Heaton, 2005)

No known method of recognition is one hundred percent accurate, even trained
humans cannot always read handwriting samples. (Downton and Impedovo, 1997. Liu et al,
2003) Publicly available methods of computer-based English numeral recognition have reached
accuracies of up to 97.10%. There are many high-accuracy methods for recognizing common
Latin characters, the highest of which have percent accuracies in the high nineties. (Liu et al,

2003)

Recognition based off of pre-recorded, physical handwriting samples is called “off-line”
recognition, while recognition based off of live input from a digitizer tablet is called “on-line”
(online) recognition. (Downton and Impedovo, 1997. Liu et al, 2003) Off-line methods are
sometimes referred to as Optical Character Recognition (OCR) systems. (Downton and
Impedovo, 1997. Heaton, 2005) Online handwriting recognition is used primarily as a user
input system for computers. Written text is transformed into “electronic text”, the text
commonly used by computers. (Downton and Impedovo, 1997. Liu et al, 2003) Conventional
methods of deciphering characters from written text include neural networks, fuzzy logic,

(Downton and Impedovo, 1997. Liu et al, 2003. Heaton, 2005) expert systems, statistics, and

Kyle Murray

large “lexicons” of words used to limit possible matches. (Downton and Impedovo, 1997. Liu et

al, 2003)

Figure 1. A Wacom
Graphire 3 digitizer
tablet.

Photo by Kyle Murray.

Digitizing tablets, which can also be called graphics tablets or just tablets, have a wide
variety of applications. There is not an industry standard application programming interface
(API) for collecting pen input data off of tablets on multiple computing platforms. (Wacom
Technology Corporation, 2005). Therefore, most online handwriting recognition systems can
only be run on one platform without needing the data input program to be rewritten.
(Downton and Impedovo, 1997. Wacom Technology Corporation, 2005) The Windows industry
standard Wintab API is used to retrieve data from tablets connected to a computer. Most
tablets can also function as the default pointing device on a computer. (Bastéa-Forte, 2005.

Wacom Technology Corporation, 2005) Adobe Flash 9 applications developed using

Kyle Murray

ActionScript 3.0 can interface with tablets that present themselves as pointing devices using the

DisplayObject mouseX and mouseY properties. (Adobe Systems Incorporated, 2006)

There are two main types of tablets. The first type has a screen directly under the
writing surface. This type of tablet is commonly seen on “Tablet PCs” (Van West, 2003), though
it is also used on higher-end graphics workstations. The second type, as seen in Figure 1, does
not require a screen, the writing surface is blank and the data from the input pen can be shown
on a separate, attached screen. These are used by signature verifications systems and by some

graphic designers. (Downton and Impedovo, 1997. Liu et al, 2005)
Question

Does processing text information from digitized pen input by segmenting the characters
into direction-based shapes and strokes increase the accuracy of character recognition versus

conventional methods using image data?
Hypothesis

Online handwriting recognition using direction-based strokes to identify letters will

recognize letters with higher accuracy than traditional image comparison-based methods.
Procedure

A class for testing handwriting recognition was started in the Adobe® Flex™ Builder™ 2
(Flex) integrated development environment, which was used for compiling ActionScript 3.0
code into Adobe” Flash® Player 9 (Flash) documents. Initially, the class was used to display lines

in a trail behind the mouse when the primary mouse button was depressed.

Kyle Murray

Two utility classes were created, forming the net.reclipse.handwriting package.
InkPoint, the first of the two new classes, was used to store coordinate, timestamp, and
pressure data from the mouse or tablet. The pressure data point was only used to store one of
two values; one representing no pressure and the other representing the presence of pressure.
The second resource class, InkTimeline, was to be used for the storage of a collection of
InkPoints so that data could be accessed and analyzed later. At first, the InkTimeline class
extended the Array class, which is class that stores information in a way not unlike a traditional
table, though the Array class is not limited to two dimensions. The InkTimeline class was later
un-extended from the Array class, as it was discovered that the data type of the return values
of class methods cannot be changed when extending a class and overriding its methods, so a
public instance of the Array class was included automatically in each InkTimeline instance to

maintain the desired functionality of InkPoint storage.

In the main class, methods were constructed to return the angle relative to the X and Y
axis between two points and the angle change from the previous point as the input device
moved across the viewable area so that directional input could be analyzed. Each stroke was
then recorded and divided up into segments based on the angle difference between InkPoints.
The tolerance level was set at 50 degrees, so a new segment was created for every change at or

above that limit. The segments were colored for debugging and visualization purposes.

These segments were broken into more segments based on trends in the direction that
the line continued in. The most common direction out of every four points (a variable amount)

was added to an Array in the InkTimeline which defined the shape of the stroke in a simplified

Kyle Murray

manner compared to the InkTimeline Array of InkPoints. This array was then normalized to
eliminate duplicate, side-by-side numbers which would interfere with recognition by forcing a
certain scale to be present for recognition to occur. The normalized collection of segments
became the ‘signature’ property of an InkTimeline instance. If two strokes intersected or one
stroke was positioned and shaped like the dot on an ‘i’ or ‘j’, the last stroke was concatenated

onto the previous stroke making one stroke that defined the character.

A third utility class named CharacterDefinition was created to handle the storage of
known characters. The character definitions had three main parts, the simplest of those being
the name of the letter it defined. The definition also carried the width:height ratio of the input
stroke and all of the known signatures of the letter. This definition could be represented in
String form (name:signature; signature:ratio), where any number of signatures could be
defined. This String could have been loaded from an external source and parsed by the class
using the addStringSample method, or generated from the CharacterDefinition object by the

toString method.

In order to recognize an input character from the Object containing the references to
character definitions, the input character was analyzed to produce a signature and ratio. The
signature was tested against the known signatures in the defined letters. If a character
definition had more than one signature definition that exactly matched the input signature, it
was given top priority. If only one signature matched, it was given second priority, and if a
defined signature contained, but was not exactly equal to the input signature, it was given third

priority. The character with the highest priority won, and ties were settled by comparing the

Kyle Murray

ratios and determining the character with the least different ratio when compared to the input

ratio.

To determine the accuracy of the recognition system, 10 letter definitions were supplied
for each of the 26 lowercase letters in the Latin alphabet. These letter definitions were
documented in String format for later use if necessary. For each letter, 20 attempts at
recognition were made, making a total of 540 letter samples. The success was recorded as
either a 0 or a 1, failure or success. The log of the console window that all trace operations

were sent to was also recorded.
The source ActionScript 3.0 files can be found at: http://handwriting.reclipse.net/source/

ActionScript 3.0 .as files can be compiled for Adobe® Flash® Player 9 by downloading the SDK at:

http://www.adobe.com/products/flex/sdk/

Kyle Murray

Discussion

The online recognition rates shown in Figure 2 are considerably lower than others that
have achieved rates up to 97.10%. One of the most likely reasons for this is that these other
recognition systems use context-based recognition, where whole words and sentences are fed
into the system and grammar and spelling rules are applied to help recognize the letters. (Liu et
al, 2003) This system only used information from a single character to determine which letter
was being drawn, so letters that could not easily be identified without context clues are much

less likely to be accurately recognized.

The decision not to use neural networks like similar systems use stems mostly from the
fact that this system was designed to transform character information into a form that was not
limited to a fixed size and not hindered by small variations in appearance. As a result, the data
that is used for recognition is easily fed into a neural network. Neural networks require
floating point data input (Downton and Impedovo, 1997. Van West, 2003), and if the
sequences of numbers from the character signatures were converted directly into floating point

forms, their relationship to the characters would be lost.

Some resolution was lost as a result of the decision to use ActionScript and not import
data directly from the tablet. The frequency of data collection and the resolution of that data
can be greatly increased when obtaining data directly from the tablet as opposed to treating
the tablet as a mouse-like pointing device. (Wacom Technology Corporation, 2005) Using the
JTablet APl (Bastéa-Forte, 2005) and an XML Socket Server (Adobe Systems Incorporated,

2006), it would be possible to send that data to Flash. After adjusting some of the variables

Kyle Murray

used to control the simplification process, the recognition system should be able to recognize
characters using data from the tablet. With the higher polling rate of the tablet, the natural
motion of the input pen should be captured more accurately. The current system showed signs

of a slow polling rate, as lines that should have been curved were straightened. This is seen in

Figure 3.

Figure 3: The Recognizer class running after being compiled. The ‘h’
| on the left has a tail caused by the pen lifting off of the surface. The ‘h’
' on the right is broken into three segments as a result of the pen moving
| faster than data was being provided.

. L Screenshot by Kyle Murray

A small issue that may have caused problems is also seen in Figure 3. The small tail on the end
of the ‘h’ to the left probably added an extra direction to the signature that was not needed. In an
update to the system, small tails like this should be removed before classification occurs. Another small
issue is the rotation of the axis. Since the X and Y coordinate axis are the basis for many things, it is not
surprising that many letters also contain vertical and horizontal lines. This causes a classification
problem when a character with a vertical segment is tilted slightly to the left or right, as the character
definition may only account for the version where the vertical segment tilted in one of the directions.
By rotating the axis 45 degrees, fewer letters might be falsely identified if they contained vertical or

horizontal lines.

One aspect of the trial process that may have falsely inflated the percent accuracy of the system
is that the author of the recognition system is the same as the conductor of the tests. Prior knowledge
of the way that the system works may have influenced the conductor in such a way that the accuracy

was pushed higher than it would have been with a 3rd-party tester who was not familiar with the system.

Kyle Murray

Further testing could be done on the current version of the system, but due to the relatively
poor success rate, better results might be achieved by fixing errors and attempting to improve the
polling rate with the aforementioned XMLSocket and Java intermediary step. Combination with a

context-based system could result in very high accuracies.

Kyle Murray

Literature Cited

Adobe Systems Incorporated. 2006. “Adobe® Flex™ 2 Language Reference”.
http://livedocs.macromedia.com/flex/2/langref/index.html

Bastéa-Forte, Marcello. 2005. “JTablet SDK v0.9.5 Documentation (API) ”.
http://cellosoft.com/sketchstudio/jtablet-docs/docs/

Chee, Yi-Min. 28 September 2004. “Ink Markup Language”. http://www.w3.org/TR/InkML/

Downton, A. C. Impedovo, S. 1997. Progress in Handwriting Recognition. World Scientific
Publishing Co. Pte. Ltd.

Heaton, Jeff. 2005. Artificial Intelligence: Programming Neural Networks in Java.

http://www.jeffheaton.com/ai/
IBM. 2001. “Pen Technologies”. http://www.research.ibm.com/electricink/

Liu, Z. Cai, J. Buse, R. 2003. Handwriting Recognition: Soft Computing and Probabilistic

Approaches. Springer-Verlag Berlin Heidelberg.

Van West, Jeff. 2003. “Using Tablet PC: Handwriting Recognition 101”.
http://www.microsoft.com/windowsxp/using/tabletpc/getstarted/vanwest_03may28ha
nrec.mspx

Wacom Technology Corporation. 2005. “Wacom Windows Developer FAQ”.
http://www.wacomeng.com/devsupport/ibmpc/wacomwindevfag.html

